Opinion-Based Entity Ranking using learning to rank
نویسندگان
چکیده
As social media and e-commerce on the Internet continue to grow, opinions have become one of the most important sources of information for users to base their future decisions on. Unfortunately, the large quantities of opinions make it difficult for an individual to comprehend and evaluate them all in a reasonable amount of time. The users have to read a large number of opinions of different entities before making any decision. Recently a new retrieval task in information retrieval known as Opinion-Based Entity Ranking (OpER) has emerged. OpER directly ranks relevant entities based on how well opinions on them are matched with a user’s preferences that are given in the form of queries. With such a capability, users do not need to read a large number of opinions available for the entities. Previous research on OpER does not take into account the importance and subjectivity of query keywords in individual opinions of an entity. Entity relevance scores are computed primarily on the basis of occurrences of query keywords match, by assuming all opinions of an entity as a single field of text. Intuitively, entities that have positive judgments and strong relevance with query keywords should be ranked higher than those entities that have poor relevance and negative judgments. This paper outlines several ranking features and develops an intuitive framework for OpER in which entities are ranked according to how well individual opinions of entities are matched with the user’s query keywords. As a useful ranking model may be constructed from many ranking features, we apply learning to rank approach based on genetic programming (GP) to combine features in order to develop an effective retrieval model for OpER task. The proposed approach is evaluated on two collections and is found to be significantly more effective than the standard OpER approach. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
ارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کاملLearning to rank related entities in Web search
Entity ranking is a recent paradigm that refers to retrieving and ranking related objects and entities from different structured sources in various scenarios. Entities typically have associated categories and relationships with other entities. In this work, we present an extensive analysis of Web-scale entity ranking, based on machine learned ranking models using an ensemble of pair-wise prefer...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملLADS: Rapid Development of a Learning-To-Rank Based Related Entity Finding System using Open Advancement
In this paper, we present our system called LADS, tailored to work on the TREC Entity Track Task of Related Entity Finding. The LADS system consists of four key components: document retrieval, entity extraction, feature extraction and entity ranking. We adopt the open advancement framework for the rapid development and use a learning-to-rank approach to rank candidate entities. We also experime...
متن کاملInvestigating Learning Approaches for Blog Post Opinion Retrieval
Blog post opinion retrieval is the problem of identifying posts which express an opinion about a particular topic. Usually the problem is solved using a 3 step process in which relevant posts are first retrieved, then opinion scores are generated for each document, and finally the opinion and relevance scores are combined to produce a single ranking. In this paper, we study the effectiveness of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 38 شماره
صفحات -
تاریخ انتشار 2016